(Names of group members are bolded; * represents graduate students, ** undergraduate students, ^ postdoctoral scholars and research scientists)

Manuscripts under construction (non-exhaustive list)

43. B. M. Minchew, S. H. R. Rosier, and R. Williams. On the dynamic response of laterally confined ice streams to sub-annual periodic forcing. in prep, 2022.

42. B. M. Minchew, B. V. Riel^, and I. Joughin. Observing traveling waves in glaciers with remote sensing: Part 2. Insights from physical models and constraints on inverse models. in prep, 2022.

41. S. Wells-Moran**, M. Ranganathan*, and B. M. Minchew. Breaking the Ice: Understanding Large-Scale Fracture Initiation Processes of Glacier Ice through Observations of Strain Rate and Estimates of Stress in Antarctic Ice Shelves. in prep, 2022.

40. Y. Sun* and B. M. Minchew. Disintegration and buttressing effect of Larsen B landfast sea ice, Antarctic Peninsula, from SAR offset tracking. in prep, 2022.

39. M. Ranganathan* and B. M. Minchew. Activation energies of creep partially control the mechanism of ice deformation. in prep, 2022.

38. M. Ranganathan* and B. M. Minchew. Dislocation creep is the dominant deformation mechanism in fast-flowing glaciers, implying n=4. in prep, 2022.

Manuscripts churning through the review process

37. B. V. Riel^ and B. M. Minchew. Variational inference of ice shelf rheology with physics-informed machine learning. submitted, 2022.

36. M. Zhong*, M. Simons, L. Zhu, and B. M. Minchew. Inferring tide-induced ephemeral grounding and subsequent dynamical response in an ice-shelf-stream system: Rutford Ice Stream, West Antarctica. submitted, 2022. [ pdf ]

35. M. Ranganathan*, J. W. Barotta**, C. R. Meyer, and B. M. Minchew. Meltwater generation in ice stream shear margins: Case study in Antarctic ice streams. submitted, 2022. [ pdf ]

34. M. Ranganathan*, B. M. Minchew, C. R. Meyer, and M. Pec. Deformational-energy partitioning in glacier shear zones. submitted, 2021. [ pdf ]

33. F. Clerc*, M. D. Behn, and B. M. Minchew. Deglaciation-enhanced mantle CO2 fluxes at Yellowstone imply positive climate feedbacks. submitted, 2021. [ pdf ]

32. E. H. Ultee^, D. Felikson, B. M. Minchew, Leigh A. Stearns, and B. V. Riel^. Statistical inference of the ice velocity response to meltwater runoff, terminus position, and bed topography at Helheim Glacier, Greenland. submitted, 2021. [ pdf ]

Published scholarly articles

31. J. D. Millstein*, B. M. Minchew, and S. S. Pegler. Ice viscosity is more sensitive to stress than commonly assumed. Nature Communications Earth and Environment, 3(57), 2022. [ pdf | doi ]

30. M. Ranganathan*, B. M. Minchew, C. R. Meyer, and M. Pec. Recrystallization of ice enhances the creep and vulnerability to fracture of ice shelves. Earth and Planetary Science Letters, 576, 2021. [ pdf | doi | sup ]

29. B. V. Riel^, B. M. Minchew, and T. Bischoff. Data-driven inference of the mechanics of slip along glacier beds using physics-informed neural networks: Case study on Rutford Ice Stream, Antarctica. Journal of Advances in Modeling Earth Systems, 2021. [ pdf | doi | sup ]

28. G. Guerin**, A. Mordret, D. Rivet, B. P. Lipovsky, and B. M. Minchew. Frictional origin of slip events of the Whillans Ice Stream, Antarctica. Geophysical Research Letters, 48(11), 2021. [ pdf | doi | sup ]

27. K. S. Shah*, S. S. Pegler, and B. M. Minchew. Dynamics of two-layer fluid flows on inclined surfaces. Journal of Fluid Mechanics, 917(A54), 2021. [ pdf | doi ]

26. P. Hunter*, C. R. Meyer, B. M. Minchew, M. Haseloff, and A. Rempel. Thermal controls on ice stream shear margins. Journal of Glaciology, 67(263): 435-449, 2021. [ pdf | doi | sup ]

25. B. V. Riel^, B. M. Minchew, and I. Joughin. Observing traveling waves in glaciers with remote sensing: New flexible time-series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland. The Cryosphere, 15(1), 407-429, 2021. [ pdf | doi | movie ]

24. M. Ranganathan*, B. M. Minchew, C. R. Meyer, and G. Hilmar Gudmundsson. A new approach to inferring basal drag and ice rheology in ice streams, with applications to West Antarctic ice streams. Journal of Glaciology, 67(262), 2021. [ pdf | doi | sup ]

23. E. H. Ultee^, C. R. Meyer, and B. M. Minchew. Tensile strength of glacial ice deduced from observations of the 2015 Eastern Skaftá Cauldron collapse, Vatnajökull ice cap, Iceland. Journal of Glaciology, 66(260): 1024-1033, 2020. [ pdf | doi ]

22. B. M. Minchew and C. R. Meyer. Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2238), 2020. [ pdf | doi | sup ]

21. B. M. Minchew and I. Joughin. Toward a universal glacier slip law. Science, 368(6486): 29-30, 2020. [ pdf | doi ]

20. F. Clerc*B. M. Minchew, and M. D. Behn. Marine ice cliff instability mitigated by slow removal of ice shelves. Geophysical Research Letters, 46(21):12108-12116, 2019. [ pdf | doi | sup | movie ]

19. B. M. Minchew, C. R. Meyer, S. S. Pegler, B. P. Lipovsky, A. W. Rempel, G. H. Gudmundsson, and N. R. Iverson. Comment on: "Friction at the bed does not control fast glacier flow" by L. A. Stearns and C. J. van der Veen. Science, 363(6427), 2019. [ pdf | doi ]

18. C. R. Meyer, A. Yehya, B. M. Minchew, and J. R. Rice. A model for the downstream evolution of temperate ice and subglacial hydrology along ice stream shear margins. Journal of Geophysical Research - Earth Surface, 123(8):1682-1698, 2018. [ pdf | doi ]

17. C. R. Meyer and B. M. Minchew. Temperate ice in the shear margins of the Antarctic Ice Sheet: controlling processes and preliminary locations. Earth and Planetary Science Letters, 498:17-26, 2018. [ pdf | doi | sup ]

16. B. M. Minchew, C. R. Meyer, A. A. Robel, G. H. Gudmundsson, and M. Simons. Processes controlling the downstream evolution of ice rheology in glacier shear margins: Case study on Rutford Ice Stream, West Antarctica. Journal of Glaciology, 64(246):583-594, 2018. [ pdf  | doi ]

15. B. M. Minchew, G. H. Gudmundsson, A. Gardner, F. S. Paolo, and H. A. Fricker. Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica. Journal of Glaciology, 64(244):333-342, 2018. [ pdf | doi ]

14. S. Angelliaume, P. Dubois-Fernandez, C. E. Jones, B. Holt, B. M. Minchew, E. Amri, and V. Miegebielle. SAR imagery for detecting sea surface slicks: performance assessment of polarization-dependent parameters. IEEE Transactions on Geoscience and Remote Sensing, 56(8):4237-4257, 2018. [ pdf | doi ]

13. A. A. Robel, V. C. Tsai, B. M. Minchew, and M. Simons. Tidal modulation of ice shelf buttressing stresses. Annals of Glaciology, 58(74):12-20, 2017. [ pdf | doi ]

12. P. Milillo, B. M. Minchew, P. Agram, B. Riel, and M. Simons. Geodetic imaging of time-dependent three-component surface deformation: application to tidal-timescale ice flow of Rutford Ice Stream, West Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 55(10):5515-5524, 2017. [ pdfdoi ]

11. S. Angelliaume, B. M. Minchew, S. Chatiang, P. Martineau, and V. Miegebielle. Multifrequency radar imagery and characterization of hazardous and noxious substances at sea. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2017. [ pdfdoi ]

10. B. M. Minchew, M. Simons, B. V. Riel, and P. Milillo. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations. Journal of Geophysical Research - Earth Surface, 122:167-190, 2017. [ pdf | doi | sup | movie1 | movie2 ]

9. B. M. Minchew, M. Simons, H. Björnsson, F. Pálsson, M. Morlighem, H. Seroussi, E. Larour, and S. Hensley. Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux. Journal of Glaciology, 62(231):147-158, 2016. [ pdf | doi ]

8. P. Milillo, B. Riel, B. M. Minchew, S. H. Yun, M. Simons, and P. Lundgren. On the synergistic use of SAR constellations' data exploitation for earth science and natural hazard response. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3):1095-1100, 2015. [ pdfdoi ]

7. M. J. Collins, M. Denbina, B. M. Minchew, C. E. Jones, and B. Holt. On the use of simulated airborne compact polarimetric SAR for characterizing oil-water mixing of the Deepwater Horizon oil spill. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3):1062-1077, 2015. [ pdf | doi ]

6. B. M. Minchew, M. Simons, S. Hensley, H. Björnsson, and F. Pálsson. Early melt-season velocity fields of Langjökull and Hofsjökull ice caps, central Iceland. Journal of Glaciology, 61(226), 2015. [ pdf | doi ]

5. J. S. Scheingross, B. M. Minchew, B. H. Mackey, M. Simons, M. P. Lamb, and S. Hensley. Fault zone controls on the spatial distribution of slow-moving landslides. GSA Bulletin, 125(3-4):473-489, 2013. [ pdf | doi ]

4. C. E. Jones, B. M. Minchew, B. Holt, and S. Hensley. Studies of the Deepwater Horizon Oil Spill With the UAVSAR Radar, Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series, volume 195, edited by Y. Liu et al., pages 33-50. AGU, Washington, DC, 2013. [ pdf | doi ]

3. B. M. Minchew, C. E. Jones, and B. Holt. Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 50(10):3812 -3830, 2012. [ pdf | doi ]

2. B. M. Minchew. Determining the mixing of oil and seawater using polarimetric synthetic aperture radar. Geophysical Research Letters, 39:L16607, 2012. [ pdf | doi ]

1. V. C. Tsai, B. M. Minchew, M. P. Lamb, and J. P. Ampuero. A physical model for seismic noise generation from sediment transport in rivers. Geophysical Research Letters, 39:L02404, 2012. [ pdf | doi ]


3. B. Kanniah*. Deep Learning to Characterize Ice Stream Flow​. MS thesis, Massachusetts Institute of Technology, 2019. [ http ]

2. B. M. Minchew. Mechanics of deformable glacier beds. PhD thesis, California Institute of Technology, 2016. [ http ]

1. B. M. Minchew. Polarimetric SAR decomposition of temperate ice cap Hofsjökull, Central Iceland. MS thesis, University of Texas at Austin, 2010. [ http ]